

A computational framework for discovery of glycoproteomic biomarkers

<u>Haixu Tang</u>, Anoop Mayampurath, Chuan-Yih Yu Indiana University, Bloomington

Yehia Mechref, Erwang Song Texas Tech University

- Goal: to build computational tools that can identify (and quantify) intact glycopeptides in complex samples by using routine proteomic instruments and protocols
 - Mining glycoforms in massive proteomic datasets available for different biological samples (cell lines, tissues, bloods, animal models, etc)
 - Accessible by well established proteomics facilities for some applications (e.g., biomarker discovery)
- Expectation: instead of comprehensively characterizing all/most glycoforms, we target at the abundant glycopeptides (*major* glycoforms)

From proteomics to glycoproteomics

• High throughput data acquisition from complex samples (e.g., human blood samples) using conventional proteomics protocols

11/18/2014

- Peptide search engines (>20): Assessment of peptide-spectrum matchings (PSMs)
 - Sequest, X!tandem cross-correlation
 - Mascot, OMSSA probabilistic scoring
 - InSpect spectra alignment scoring
- Each experimental spectrum is
 compared <u>against all putative</u>
 <u>peptides in a database</u> with the
 matched precursor mass; only the
 1st ranked PSM is considered to be
 correct.

Challenge: Assessment of PSMs

- To determine the correct PSMs among all PSMs
 - Each experimental spectrum is compared against all peptides in the database with the matched precursor mass; only the 1st ranked PSM is considered to be correct.
 - there is ≤1 correct PSM for each spectrum.

Industrial standard: to report identified peptides by controlled false discovery rate (FDR) – the target-decoy search strategy

Search both the target and a decoy database (e.g. the reverse protein database)
Use the peptide-spectrum matches (PSMs) in decoy database to estimate the false PSMs in the target database

• FDR = (# decoy PSMs) / (# target PSMs)

•Can be used for any search engine or scoring model

Toward the glycoproteomics for the identification of intact glycopeptides

- Main challenges
 - Data acquired from complex samples using routine proteomics protocols
 - A majority number of un-modified peptide ions and a considerable number of glycopeptide ions
 - Glycopeptide ions often show lower abundances than ions of nonmodified peptide from the same protein due to microheterogenenity
 - target database is big
 - Various glycans may attach to the same glycosylation site: <u>microheterogeneity</u>
 - des X # glycans: >150
 - # putative glycopeptides = # peptides × # glycans
 - More search time & false negatives (missing identifications)!

Higher false discovery rate with larger target database

Beijing, 2014

Higher false discovery rate with larger target database

Higher false discovery rate with larger target database

$$\mathbf{P}(t \mid S) = \frac{\mathbf{P}(S \mid t) \mathbf{P}(t)}{\mathbf{P}(S \mid t) \mathbf{P}(t) + \mathbf{P}(S \mid \text{not } t)[1 - \mathbf{P}(t)]}$$

P(t) ~ # true PSMs / # potential PSMs = (# peptides in the sample × # spectra per peptide) / (# peptides in the database × # experimental spectra)

Therefore, the larger the database, and the more spectra, the higher FDR. \rightarrow Larger effective search space (i.e., larger target database and more MS/MS spectra, e.g. in complex samples) introduces higher FDR.

Strategies: 1) focus on only glycopeptides that are expected to be observed from the samples, e.g., from glycoproteins identified using un-modified peptide ions; using motifs of glycosylation sites;

2) Filter lons that are likely derived from glycopeptides;

3) Orthogonal scoring of different fragmentation spectra, e.g. ETD for peptide fragmentation and CID for glycan fragmentation.

Overview of the computational framework

Testing datasets & target glycoprotein databases

Sample	Description	# datasets	# glycoproteins in database
Fetuin	Bovine Fetuin; 1 hr LC-MS/MS analysis	3	2
5 proteins mixture	Mixture of 5 model glycoproteins (bovine fetuin, human AGP, bovine pancreatic RNase B, porcine thyroglobulin (PTG), and human fibronectin ; 1 hr LC-MS/MS analysis	4	5
Serum from cancer patients	5 hrs LC-MS/MS analysis	6	105
Serum from control individuals	5 hrs LC-MS/MS analysis	6	105

For serum samples, a total (union) of 105 unique glycoproteins can be identified using Mascot against human IPI protein database in 12 cancer and control samples.

11/18/2014

HCD/CID scoring for filtering putative glycopeptide spectra

- count longest path from one peak to next whose inter-peak spacing corresponds to mono- or di-saccharide loss
- scores given by the length of longest pat

- Presence/absence of 7 characteristic peaks

- P-value computed from binomial distribution

Mayampurath, et. al., 2011, RCM, 25 (14), 2007-2019

2 Peptide identification by matching ETD spectra with peptides in database

How accurate is the ETD scoring? A target-decoy search for estimating FDR

ETD scoring is not sufficient to identifying intact Nlinked glycopeptides in complex samples

	Glycan decoy search (FDR<0.05)				Peptide decoy search (FDR<0.05)			
	Spectra	Glyco- peptides	Sites	Proteins	Spectra	Glyco- peptides	Sites	Proteins
Fetuin	25	15	5	2	16	7	3	2
Cancer serum	28	20	13	12	23	16	10	9
Healthy serum	25	16	10	9	9	4	2	2

Note: the quality of ETD spectra is not sufficient to distinguish the true from false glycopeptide-spectrum matching (GPMs); therefore, we consider a unified scoring for both peptide identification (using ETD) and glycan sequencing (using CID) for the characterization of glycopeptides.

③ Glycan sequencing by using CID spectra of glycopeptides

• CID spectra of glycopeptide contain intensive peaks resulted from glycan fragmentation;

• Glycan sequencing from a CID spectrum of a glycopeptide is equivalent to that from a glycan spectrum, if Y1 ion in the glycopeptide spectrum is given;

• Y1 ion can be predicted from the peptide identified by using ETD scoring .

③ Glycan sequencing by using CID spectra of glycopeptides

Add pseudo Y-ions by subtracting corresponding b-ion mass from precursor mass. Score: # matched peaks in the CID spectrum; **additive** to ETD score of the same ion <u>Purpose</u>: 1) to assess how likely the predicted Y1 ion derive a N-glycan (and thus correct); 2) derive the most likely N-glycan structure.

Computational Proteomics Conference, Tang, et. al., 2005, Yu, et. al., 2014. Beijing, 2014

④ FDR estimation based on a unified scoring in glycan/peptide sequencing

Target searchPeptide decoyGlycoproteinPutative
glycan massReverse
glycoproteinPutative
glycan mass
database

A glycopeptide-spectrum matching (GPMs) is defined as the triplet (E, C, P), where E and C represent the ETD and CID spectrum of a precursor ion, respectively, and P is a peptide. A GPM is scored as the total score: S(E,C,P)=S(E,P)+S(C,P). Because here we used the peak counts in both ETD/CID scoring, they are directly additive. In general, one can train a linear or non-linear function of these two scores. In a combined target-decoy search, the GPM score can be computed for sorting each target or decoy glycopeptide, and FDR can be estimated by FDR=(# top-decoy-hits) / (# top-target-hits). Note: in most cases, the top-hit of an ETD spectrum to decoy peptide will NOT be the reverse peptide of the true glycopeptide, indicating a false Y1-ion will be assigned in this case, which will often lead to a low S(C,P) in glycan sequencing. Therefore, the total score S(E,C,P) is lower, providing higher distinguishing power between true and false GPMs.

Re-assessing GSMs in LC-MS/MS data from human serum samples

T: GSMs from target database;

F: GSMs from decoy database;

Computational Proteomics Conference,

Beijing, 2014

Identification of glycopeptides using CID/ETD combined scoring

GlycoMap Analysis	# protein IDs	# sites detected	# intact glycopeptides	# glycopeptides with glycan	Glycan class distribution for completely sequenced glycans		
				sequences completely sequenced	# complex	# high mannose	# hybrid
Fetuin	2	5	22	8	8	0	0
5 protein mixture	4	5	11	6	6	0	0
Cancer serum	32	50	101	93	83	4	6
Control serum	29	44	92	89	82	1	5
Serum (total)	33	53	103	94	84	4	6

*FDR < 0.05

Mayampurath, et. al., 2013,,Anal. Chem., 25 (14), 2007-2019

Computational Proteomics Conference,

Beijing, 2014

ceruloplasmin precursor

Implementation

- GlycoFragwork implemented in C#
 - <u>http://darwin.informatics.indiana.edu/col/GlycoFr</u> <u>agwork/</u>
 - Source code: http://sourceforge.net/projects/glycofragwork/
 - Input: mzXML or .raw file;
 - output: identified glycopeptides, cartoon of glycans, CID & ETD scores, FDR
 - Glycan sequencing algorithm is implemented as an independent .dll

Glycopeptide quantification for biomarker discovery

Beijing, 2014

Site-specific protein glycosylations (in cancer)

Haptoglobin : N-184, N-207, N-211, N-241

A linear ANOVA model for discovery of disease associated site-specific glycosylations

$$y_{i,j(i),k(j(i)),c} = p_i + r_{i,c} + r_c + f_{j(i)} + g_{k(j(i))} + b_q + e_{i,j(i),k(j(i)),c}$$

Mayampurath, et. al., J. Proteome Res, 2014.

Computational Proteomics Conference,

Beijing, 2014

Log-Likelihood ratio test

$$H_0: r_{i,c=1} = 0, H_a: r_{i,c=1} \neq 0$$

protein	p values
splP04004lVTNC_HUMAN	8.80×10^{-17}
splP02790 HEMO_HUMAN	1.29×10^{-11}
splP01024lCO3_HUMAN	1.21×10^{-6}
splP00738 HPT_HUMAN	0.000372122
splP00450lCERU_HUMAN	0.606276481
splP02749lAPOH_HUMAN	0.999999995

Note: None of these four glycoproteins shown as significant (p-value<0.01) when t-test was applied to the quantities of individual glycopeptides from these proteins.

Mayampurath, et. al., J. Proteome Res, 2014.

Haptoglobin

Complement 3 protein

0 N-85 N-85 Vitronectin Control Cancer

N-169

N-242

Beijing, 2014

N-242

Conclusions

- We developed a computational framework for discovery of glycoproteomic biomarkers using LC-MS/MS data
- The framework can be applied to clinical proteomics without specific sample preparation and analytical protocols
 - Routine proteomic approaches can be used for data collection
- We expect glycopeptides can be identified and quantified from existing proteomic data by using the framework

Acknowledgements

<u>IU</u>

- Anoop Mayampurath
- •Chuan-Yih Yu
- •Abhinav Mathur
- •Jagadeshwar Balan
- •Yin Wu

Funding: NSF: DBI-0642897 Persistent Fellowship (AM)

<u>Texas Tech</u>

- Prof. Yehia Mechref
- Ehwang Song
- Yunli Hu

<u>PNNL</u>

Brian LaMarche